Spectacular Hubble view of Centaurus A

hubble - centaurus spectacular - 1a

Spectacular Hubble view of Centaurus A

Centaurus A, also known as NGC 5128, is well known for its dramatic dusty lanes of dark material. Hubble’s new observations, using its most advanced instrument, the Wide Field Camera 3, are the most detailed ever made of this galaxy. They have been combined here in a multi-wavelength image which reveals never-before-seen detail in the dusty portion of the galaxy.

As well as features in the visible spectrum, this composite shows ultraviolet light, which comes from young stars, and near-infrared light, which lets us glimpse some of the detail otherwise obscured by the dust.

Credit:

NASA, ESA, and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration. Acknowledgment: R. O’Connell (University of Virginia) and the WFC3 Scientific Oversight Committee

Advertisements

The magnificent starburst galaxy Messier 82

hubble - magnificent starburst galaxy 1

The magnificent starburst galaxy Messier 82

This mosaic image of the magnificent starburst galaxy, Messier 82 (M82) is the sharpest wide-angle view ever obtained of M82. It is a galaxy remarkable for its webs of shredded clouds and flame-like plumes of glowing hydrogen blasting out from its central regions where young stars are being born 10 times faster than they are inside in our Milky Way Galaxy.

Credit:

NASA, ESA and the Hubble Heritage Team STScI/AURA). Acknowledgment: J. Gallagher (University of Wisconsin), M. Mountain (STScI) and P. Puxley (NSF).

Stunning HD portrait image of Pinwheel Galaxy

hubble - pinwheel galaxy 2

Stunning HD portrait image of Pinwheel Galaxy

This new Hubble image reveals the gigantic Pinwheel galaxy, one of the best known examples of “grand design spirals”, and its supergiant star-forming regions in unprecedented detail. The image is the largest and most detailed photo of a spiral galaxy ever taken with Hubble.

Credit:

Image: European Space Agency & NASA

Image processing: Davide De Martin (ESA/Hubble)

CFHT image: Canada-France-Hawaii Telescope/J.-C. Cuillandre/Coelum

NOAO image: George Jacoby, Bruce Bohannan, Mark Hanna/NOAO/AURA/NSF

Stellar Nursery in the arms of NGC 1672

hubble - stellar nursery 706a

Stellar Nursery in the arms of NGC 1672

The barred spiral galaxy NGC 1672, showing up clusters of hot young blue stars along its spiral arms, and clouds of hydrogen gas glowing in red. Delicate curtains of dust partially obscure and redden the light of the stars behind them. NGC 1672’s symmetric look is emphasised by the four principal arms, edged by eye-catching dust lanes that extend out from the centre.

Credit:

NASA, ESA

Galactic wreckage in Stephan’s Quintet

hubble-stephans-quintet

Galactic wreckage in Stephan’s Quintet

A clash among members of a famous galaxy quintet reveals an assortment of stars across a wide colour range, from young, blue stars to aging, red stars.

This portrait of Stephan’s Quintet, also known as the Hickson Compact Group 92, was taken by the new Wide Field Camera 3 (WFC3) aboard the NASA/ESA Hubble Space Telescope. Stephan’s Quintet, as the name implies, is a group of five galaxies. The name, however, is a bit of a misnomer. Studies have shown that group member NGC 7320, at upper left, is actually a foreground galaxy that is about seven times closer to Earth than the rest of the group.

Three of the galaxies have distorted shapes, elongated spiral arms, and long, gaseous tidal tails containing myriad star clusters, proof of their close encounters. These interactions have sparked a frenzy of star birth in the central pair of galaxies. This drama is being played out against a rich backdrop of faraway galaxies.

The image, taken in visible and near-infrared light, showcases WFC3’s broad wavelength range. The colours trace the ages of the stellar populations, showing that star birth occurred at different epochs, stretching over hundreds of millions of years. The camera’s infrared vision also peers through curtains of dust to see groupings of stars that cannot be seen in visible light.

NGC 7319, at top right, is a barred spiral with distinct spiral arms that follow nearly 180 degrees back to the bar. The blue specks in the spiral arm at the top of NGC 7319 and the red dots just above and to the right of the core are clusters of many thousands of stars. Most of the Quintet is too far away even for Hubble to resolve individual stars.

Continuing clockwise, the next galaxy appears to have two cores, but it is actually two galaxies, NGC 7318A and NGC 7318B. Encircling the galaxies are young, bright blue star clusters and pinkish clouds of glowing hydrogen where infant stars are being born. These stars are less than 10 million years old and have not yet blown away their natal cloud. Far away from the galaxies, at right, is a patch of intergalactic space where many star clusters are forming.

NGC 7317, at bottom left, is a normal-looking elliptical galaxy that is less affected by the interactions.

Sharply contrasting with these galaxies is the dwarf galaxy NGC 7320 at upper left. Bursts of star formation are occurring in the galaxy’s disc, as seen by the blue and pink dots. In this galaxy, Hubble can resolve individual stars, evidence that NGC 7320 is closer to Earth. NGC 7320 is 40 million light-years from Earth. The other members of the Quintet reside about 300 million light-years away in the constellation Pegasus.

These more distant members are markedly redder than the foreground galaxy, suggesting that older stars reside in their cores. The stars’ light also may be further reddened by dust stirred up in the encounters.

Spied by Edouard M. Stephan in 1877, Stephan’s Quintet is the first compact group ever discovered.

WFC3 observed the Quintet in July and August 2009. The composite image was made by using filters that isolate light from the blue, green and infrared portions of the spectrum, as well as emission from ionised hydrogen.

These Hubble observations are part of the Hubble Servicing Mission 4 Early Release Observations. NASA astronauts installed the WFC3 camera during a servicing mission in May to upgrade and repair the 19-year-old Hubble telescope.

Credit:

NASA, ESA and the Hubble SM4 ERO Team

A rose made of galaxies

hubble-rose-of-galaxies-heic1107a

A rose made of galaxies

This image of a pair of interacting galaxies called Arp 273 was released to celebrate the 21st anniversary of the launch of the NASA/ESA Hubble Space Telescope.

The distorted shape of the larger of the two galaxies shows signs of tidal interactions with the smaller of the two. It is thought that the smaller galaxy has actually passed through the larger one.

Credit:

NASA, ESA and the Hubble Heritage Team (STScI/AURA)

Giant Galaxy Cluster Abell-383

hubble-galaxy-cluster-abell393

Giant Galaxy Cluster Abell-383

The giant cluster of elliptical galaxies in the centre of this image contains so much dark matter mass that its gravity bends light. This means that for very distant galaxies in the background, the cluster’s gravitational field acts as a sort of magnifying glass, bending and concentrating the distant object’s light towards Hubble. These gravitational lenses are one tool astronomers can use to extend Hubble’s vision beyond what it would normally be capable of observing.

Using Abell 383, a team of astronomers have identified and studied a galaxy so far away we see it as it was less than a billion years after the Big Bang. Viewing this galaxy through the gravitational lens meant that the scientists were able to discern many intriguing features that would otherwise have remained hidden, including that its stars were unexpectedly old for a galaxy this close in time to the beginning of the Universe. This has profound implications for our understanding of how and when the first galaxies formed, and how the diffuse fog of neutral hydrogen that filled the early Universe was cleared.

Credit:

NASA, ESA, J. Richard (CRAL) and J.-P. Kneib (LAM). Acknowledgement: Marc Postman (STScI)